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ABSTRACT

In this work, we present a multiple description coding (MDC) scheme for reliable transmission of compressed
three dimensional (3-D) meshes. It trades off reconstruction quality for error resilience to provide the best
expected reconstruction of 3-D mesh at the decoder side. The proposed scheme is based on multiresolution
geometry compression achieved by using wavelet transform and modified SPIHT algorithm. The trees of wavelet
coefficients are divided into sets. Each description contains the coarsest level mesh and a number of tree sets
coded with different rates. The original 3-D geometry can be reconstructed with acceptable quality from any
received description. More descriptions provide better reconstruction quality. The proposed algorithm provides
flexible number of descriptions and is optimized for varying packet loss rates (PLR) and channel bandwidth.
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1. INTRODUCTION

3-D models are widely used nowadays. The most common representation for 3-D objects is a surface based
triangle mesh.1 Achieving high quality models requires large number of triangles. Therefore, compressing mesh
data is necessary due to storage space and bandwidth limitations. A great number of 3-D mesh compression
schemes have been proposed in the literature.2 In multimedia applications such as virtual presence, internet
computer games, e-commerce, tele-medicine, object-based video compression, 3DTV, 3-D meshes need to be
communicated in a networked environment. However, in a typical network, packets may be lost or delayed
because of congestions and buffer overflow. There are several error-resilient coding schemes for meshes in the
literature. In the approach of Yan et al.,3 error resilience is achieved by segmenting the mesh and transmitting
each segment independently. At the decoder, these segments are stitched using the joint-boundary information
which is considered the most important. However, this method does not provide a coarse-to-fine representation
of the model. AlRegib et al.4 proposed to assign optimal error correcting codes to layers of progressively coded
3-D mesh. This method is scalable with respect to both channel bandwidth and channel packet loss rate. It can
be applied to any progressive compression scheme, which produces a hierarchical bitstream. However, if a coarse
layer cannot be recovered due to packet losses, all the refinement layers become useless and decoding process
terminates.

An alternative to layered progressive mesh coding is Multiple Description Coding (MDC). MDC is a source-
channel coding of information, which can be represented with different levels of quality. The source is encoded
into several bitstreams (i.e. multiple descriptions to be transmitted via independent channels). In the receiver,
source can be reconstructed from any single bitstream at lower yet acceptable quality. Higher quality is achieved
if more bitstreams are received. Representing the source with different levels of quality makes MDC similar to
layered coding. However, while the latter requires correct reception of the base layer in order for enhancement
layers to be useful, the former can reconstruct the source from any subset of bitstreams.5
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Although MDC of images, video and audio has been extensively studied, little research has been done for MDC
of 3-D geometry. In Ref.,6 multiple descriptions are generated by splitting the mesh geometry into submeshes and
including the whole connectivity information in each description. Another approach7 applies multiple description
scalar quantization (MDSQ) to wavelet coefficients of a multiresolution compression scheme. The obtained two
sets of coefficients are then independently compressed by the SPIHT coder. However, in those MDC schemes,
descriptions are created with heuristic methods and no optimal solutions are proposed for varying network
conditions.

In this paper, we propose a novel approach for MDC of 3D-meshes. Our MD coder is based on Progressive
Geometry Compression (PGC) scheme,8 where the input model is remeshed to obtain a semi-regular mesh that
approximates the geometry of the original mesh. Then, wavelet transform is applied. The output of wavelet
transform is the coarsest level mesh and wavelet coefficients that form edge-based trees. These edge-based trees
are coded with SPIHT algorithm. To provide robustness to channel errors, wavelet coefficient trees are grouped
into several sets, which are independently coded. Two strategies of forming tree sets are considered in this paper.
Those sets are packetized into multiple descriptions in such a way that each description contains one tree set
that is coded with higher rate and several redundant tree sets coded with lower rates.

2. THE PROPOSED SCHEME

Our MDC coder is based on PGC scheme,8 which is a progressive compression scheme for arbitrary topology,
highly detailed and densely sampled meshes arising from geometry scanning. The original model in PGC is
remeshed to have a semi-regular structure. The remeshing is done in such a way that the error caused by
remeshing is smaller than the estimated discretization error. The obtained semi-regular mesh undergoes a loop-
based or butterfly-based wavelet decomposition to produce a coarsest level mesh and wavelet coefficients. For
the reason of its irregular structure, coarsest level connectivity is coded by Touma and Gotsman (TG) coder.9

The geometry data of the coarsest mesh is uniformly quantized and added to bitstream. Wavelet coefficient
(edge-based) trees are coded with SPIHT algorithm.10

In order to obtain multiple descriptions from wavelet coefficients, we adapted the ideas from MD image
coding.11,12 Suppose that the coder generates N descriptions. In our coder (Fig. 1), wavelet coefficient trees are
split into several sets Wi, i = 1 . . . N and coded by SPIHT algorithm at high bitrate. These sets are included in
the descriptions in a following way. Each description contains M copies of different tree sets (M ≤ N). Namely,
Description i contains one set Wi coded at rate Ri,0 and M − 1 sets of redundant trees Wj , j 6= i. These M − 1
tree sets represent coding redundancy and are coded at lower rates than Ri,0. Rates Ri,j are obtained as a result
of optimization explained in Section 3.

If all the descriptions are received, only the trees coded with higher rates Ri,0 are used for reconstruction.
Redundant copies are used when the descriptions that contain the higher-rate copies of coded tree sets are lost.
Thus, if some descriptions are lost, most important parts of the original trees in those descriptions are recovered
from their copies coded at lower rates. The compressed coarsest mesh representation C with rate RC is included
in every description to facilitate the inverse wavelet transform even if only one description is received. Duplicating
coarsest mesh C also increases coding redundancy.

Figure 1. The encoder scheme.



(a) PSNR= 50.73 dB (b) PSNR= 48.51 dB

Figure 2. Reconstruction from one description for different types of tree grouping. (a) Spatially disperse grouping;
PSNR= 50.73 dB. (b) Spatially close grouping, group size is 10; PSNR= 48.51 dB.

The way of grouping coefficient trees into sets is particularly important, since different sets are reconstructed
with different quality in case of one description loss. Therefore, 3-D mesh locations corresponding to different
tree sets will have different quality. In our experiments, we have tried two types of tree set grouping: grouping
closely located trees together and grouping spatially disperse trees.

To perform grouping of spatially dispersed or spatially close trees into sets, ordering of first-level wavelet
coefficients (roots of wavelet trees) is performed. This ordering is performed together with the coarsest mesh
vertices with the algorithm proposed in Ref.13,14 This algorithm provides ordering of vertices, which has good
locality and continuity properties. Then, the desired type of grouping is obtained by sampling a one-dimensional
array, which is the output of the ordering algorithm.13,14 Disperse grouping is obtained by sampling the array
in a round-robin fashion. Spatially close grouping is obtained by assigning groups of successive vertices with the
chosen group size to the same set.

We have found that visual quality is better by grouping spatially close trees. Grouping spatially disperse
trees provides annoying artifacts when reconstructing from only one description. This is illustrated in Fig. 2.
Model Bunny is encoded into four descriptions and optimized for PLR = 15%. Two grouping strategies are
compared: grouping spatially disperse trees and grouping spatially close trees with group size 10. The model is
reconstructed from the Description 1 alone. One can see that although grouping disperse disperse trees achieves
lower objective distortion than grouping close trees, it produces annoying visual artifacts. Therefore, in the
following, we use spatially close grouping with group size 10.

3. OPTIMIZING BIT ALLOCATION

Redundancy of the proposed algorithm is determined by the number of redundant tree copies and their rates,
and the coarsest mesh size. Bit allocation problem has to minimize expected distortion at the decoder subject
to probability of packet loss P and the target bit budget. We use a simple channel model where probability
of packet loss P for each packet is the same and independent of previous channel events. In the following, we
assume for simplicity that one packet corresponds to one description. If the description has to be fragmented
into different packets, probability of the description loss P can easily be found from PLR.

Suppose that N descriptions are generated. Then, coefficient trees are split into N tree sets, and M copies of
tree sets are included in one description (M ≤ N). Given P , it is easy to determine for each copy of the tree set
the probabilities Pi, i = 0, . . . M that this copy is used for reconstruction where P0 is the probability of using the
full-rate copy of the tree set, and PM is the probability of not receiving any copy of the tree set. Probabilities Pi



can easily be found from P and the packetization strategy. Thus, we have to minimize the expected distortion

E[D] =

N
∑

i=1

M
∑

j=0

PjDij(Rij), (1)

where Dij is the distortion incurred by using j-th copy of a tree set i and Rij represents bits spent for j-th copy
of i-th tree set. Optimization is performed under following bitrate constraints

N
∑

i=1

M
∑

j=0

Rij + NRC ≤ R, (2)

where R is the target bitrate and NRC is the rate of the coarsest mesh. The rate of the coarsest mesh is chosen
constant with geometry information quantized to 14 bitplanes.

Optimization of bit allocation requires computation of D(R) function for every allocation step. Calculation of
D(R) is a computationally expensive operation. However, each tree set contributes to total distortion D. Since
each tree set corresponds to some separate location on the mesh surface (defined by the root edge) in grouping
spatially close trees, the distortions corresponding to separate tree sets can be considered additive. Therefore,
distortion-rate (D-R) curve Di(Ri) for each coefficient tree set is obtained in advance. Calculations of Di(Ri)
are performed only once, before the optimization algorithm is used for the first time. Then, D-R are saved and
can be used every time in bit allocation algorithm for new values of R and P .

Optimization is performed with generalized Breiman, Friedman, Olshen, and Stone (BFOS) algorithm.15

BFOS algorithm first allocates high rate for each copy of the tree set. Then, the algorithm consequently deallo-
cates bits from the sets where D(R) curves shows the lowest decay at allocated bitrate. This process stops when
bit budget constraints are satisfied. In case optimization brings zero rates for some redundant trees copies, these
copies are not included in the descriptions. Simulations show that bit-allocation algorithm exhibits the desired
behavior. The higher is the packet loss rate, the more bits are allocated to redundant copies providing more
robustness to packet losses.

4. COMPLEXITY ISSUES AND DISTORTION-RATE FUNCTION MODELING

There is no immediate objective distortion metric in 3D meshes like mean-square error in images. One of the
most popular and robust objective distortion metric is L2 distance between two surfaces. L2 distance between
two surfaces X and Y is defined as

d(X,Y ) =

(

1

area(X)

∫

x∈X

d(x, Y )2dx

)1/2

. (3)

Since the distance is not symmetric, it is symmetrized by taking maximum of d(X,Y ) and d(Y,X). Metro
tool16 approximates this distance by sampling vertices, edges, and triangles and taking root mean square value
of shortest distances from points in X to surface Y . Calculation of these distances is an expensive operation.
Therefore, long off-line computations are needed to obtain operational D-R curves that are used in bit allocation.

To increase the speed of calculating distortion, we use D-R function modeling17 presented for wavelet-based
coding of images. In our experiments, we use a Weibull model.17 We have found that Weibull model can
approximate well D-R function of wavelet coefficient tree sets. The Weibull model is

D(R) = a − be−cRd

, (4)

where real numbers a, b, c, and d are parameters, which depend on the D-R characteristics of the source and
the bitstream. As there are four parameters in this model, D(R) curve can be found by using at minimum
four points that considerably decreases the amount of computations. This model can approximate both L2 and
PSNR curves. To fit Weibull model to D-R samples, we use nonlinear least-squares regression.
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Figure 3. Comparison between the Weibull model (4 samples) and operational D-R curve (relative L2 error) for the first
set of wavelet coefficient trees for Bunny model. (a) Relative L2 error in units of 104; (b) PSNR.

Fig. 3 compares true operational D-R curves and their Weibull models. The Weibull models are D(R) =

0.000169−0.002578e−0.8134R0.52805

and D(R) = 75.48+24.264e0.0153R0.675

for L2-distance and PSNR respectively.

One can see that the model closely approximates the real data. Moreover, the model has a nice feature of
convexity, which is desirable for bit allocation algorithm. As the model needs only four samples to model the
D-R curve, only 4N D-R samples are computed to generate D-R curves for N sets.

5. SIMULATION RESULTS

In this section, we present simulation results for test models Bunny and Venus head. The reconstruction distortion
is relative L2 error, which is calculated with Metro tool.16 Relative error is calculated by dividing L2 distance
to the original mesh bounding box diagonal. The error is shown in the figures in units of 10−4. We also provide
same numbers in PSNR scale where PSNR = 20 log10 peak/d, peak is the bounding box diagonal, and d is the
L2 error. When all descriptions are lost and no reconstruction is possible, we calculate the distortion as the L2

distance between the surface of the original mesh and a single point with coordinates (0, 0, 0).

In the experiments, we compare three coders. The first coder is the one proposed in this paper, which is
named Tree-based Mesh MDC (TM-MDC). The second coder is a simple MDC coder where the 3-D model is
coded into four descriptions. Each description contains the coarsest mesh and one set of wavelet coefficient trees.
The sets of coefficient trees in both coders are formed from spatially close groups of trees of size 10. This coder
is the same as TM-MDC optimized for P = 0 (for P = 0, no redundant trees are included in the descriptions).
The third coder is unprotected SPIHT. The packetization for unprotected SPIHT is performed in the following
way. The output bitstream of PGC coder is divided into N parts of equal size, where N is the number of
descriptions in the MD coder that unprotected SPIHT is compared to. PGC produces the embedded bitstream.
Thus, the received part can be used for reconstruction if all the packets containing earlier parts of bitstream
have been received. For example, if parts one, two, and four are received, only parts one and two are used for
reconstruction. If part one is lost, no reconstruction is available.

Fig. 4 and Fig. 5 show the average distortion for reconstruction for the proposed algorithm from different
number of received descriptions for models Bunny and Venus head. Model Bunny is coded at 22972 Bytes
(5743 Bytes per each description) and model Venus head at 24404 Bytes (6101 Bytes per each description).
The curves are generated for TM-MDC. Bit allocation is performed for each value of P . The corresponding
value of redundancy ρ is given in brackets. One can see that the coder optimized for P = 1% shows the best
performance when all the descriptions are received while the coder optimized for P = 15% shows the best results
for reconstruction from one, two, and three descriptions.
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Figure 4. Reconstruction of Bunny model from different number of descriptions. The results are given for bit allocations
for different packet loss rates (PLR). The redundancy ρ is given in brackets. (a) Relative L2 error in units of 104; (b)
PSNR.
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Figure 5. Reconstruction of Venus head model from different number of descriptions. The results are given for bit
allocations for different packet loss rates (PLR). The redundancy ρ is given in brackets. (a) Relative L2 error in units of
104; (b) PSNR.
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Figure 6. Model Bunny. Comparison of network performance of the proposed TM-MDC with a simple MDC scheme and
unprotected SPIHT. The results for TM-MDC with D-R curve modeling are given as TM-MDC (Weibull). (a) Relative
L2 error in units of 104; (b) PSNR.

Fig. 6 and Fig. 7 compare the network performance of the proposed TM-MDC, the simple MD coder, and
unprotected SPIHT. The results are calculated for P = 0, 1, 3, 5, 10, 15, 20%. In TM-MDC coder, bit allocation
is optimized for each P . For simple MDC coder, the value of redundancy is always fixed. These figures also
compare performance of TM-MDC using ”real” operational D-R curves for bit allocation and TM-MDC using D-
R function modeling to increase the speed of data collection. For each P , we have performed 100000 experiments
(simulations of packet losses) and calculated the average distortion. For P = 0, TM-MDC and simple MD coder
show the same performance because the optimized for P = 0 TM-MDC coder and simple MD coder are in
fact the same coder. Unprotected SPIHT shows slightly better performance than MD coders in the error-free
environment (P = 0). However, for higher values of P , performance of simple MDC coder and unprotected SPIHT
dramatically decreases while the reconstruction quality of TM-MDC shows mild degradation. For P = 20%, the
optimized TM-MDC coder shows PSNR 10 dB higher than the simple MD coder and 30 to 40 dB higher than
unprotected SPIHT. Because of big difference in distortion values between MD coders and unprotected SPIHT,
the results for the latter one are shown only in PSNR scale. TM-MDC using Weibull model for D-R function
shows almost as good performance as TM-MDC using real operational D-R curves. Thus, D-R curve modeling
can be used to decrease the amount of computations at preparatory stage without significant decrease in network
performance.

Fig. 8 shows the average distortion for reconstruction from different number of received descriptions for
model Bunny encoded into 8 descriptions at total 25944 Bytes. The curves are generated for TM-MDC coder
with bit allocation for P = 5, 10%. The value of redundancy ρ is given in brackets. TM-MDC is compared to
unprotected SPIHT. One can see that unprotected SPIHT achieves higher PSNR than TM-MDC only in case
when all the descriptions are received. When less than eight descriptions are received, TM-MDC exhibits much
higher PSNR.

Fig. 9 shows the trade-off between the central distortion D0 and mean-side distortion (D1 +D2)/2. The plot
is presented for Bunny model coded into two descriptions at total 21486, 16486, and 11486 Bytes.

Figures 10 and 11 show visual reconstruction results. In Fig. 10, model Bunny is encoded into four descrip-
tions with redundancy ρ = 63% at total 22972 Bytes and reconstructed from one, two, tree, and four description.
One could see that even the reconstruction from one description provides acceptable visual quality. Fig. 11
shows the visual reconstruction results for Venus head model, encoded into four descriptions with redundancy
ρ = 53% at total 24404 Bytes. Both models are encoded with grouping spatially close trees with group size 10.
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Figure 7. Model Venus head. Comparison of network performance of the proposed TM-MDC with a simple MDC scheme
and unprotected SPIHT. (a) Relative L2 error in units of 104; (b) PSNR.
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Figure 10. Reconstruction of Bunny model from (left to right): one description (48.36 dB), two descriptions (63.60 dB),
three descriptions (71.44 dB), four descriptions (74.33 dB).

Figure 11. Reconstruction of Venus head model from (left to right): one description (53.97 dB), two descriptions (65.18
dB), three descriptions (72.51 dB), four descriptions (77.08 dB).

6. CONCLUSIONS AND FUTURE WORK

We have proposed a novel approach for MDC of 3-D meshes. Our MD coder is based on PGC scheme.8 Wavelet
transform is applied to the semi-regular remeshed model, and wavelet coefficient trees are coded with SPIHT
algorithm. Our algorithm exploits redundancy in a form of redundant partially-coded trees of wavelet coefficients
and a duplicated coarsest mesh. Two strategies of grouping the trees were studied, and spatially close grouping
was chosen as the one providing better visual quality. To decrease the amount of computations at the preparatory
stage, D-R function modeling can be exploited with the price of only slight decrease in network performance.
The algorithm is capable of providing flexible number of descriptions and is optimized for varying packet loss
rate. Graceful degradation of quality is achieved in presence of increasing packet loss rate. The reconstruction
results show good visual perception quality.

The plans for future in this direction include optimization of the coarse mesh bit allocation and partitioning
coarsest mesh vertices into different sets in order to further decrease the amount of redundancy. We also plan
to consider more complicated channel model and packetization strategy which better emulate the behavior of a
real network and further investigate tree grouping strategies.
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