
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Generalized deblocking filter for AVM
Andrey Norkin

Encoding Technologies
Netflix

Los Gatos, CA, USA
anorkin@netflix.com

Abstract—The AV1 deblocking filter did not sufficiently

attenuate visual quality artifacts when used in the AOMedia video
model (AVM), especially at lower bitrates. A generalized
deblocking filter described in this paper uses one equation for any
filter length. The filter brings PSNR-YUV BD-rate –0.17%,
–0.90%, –1.07%, and –0.92% on All Intra, Random Access, Low-
Delay, and Adaptive Streaming configurations in the AOMedia
common test conditions. Improvement of visual quality is
observed on a number of sequences, while the computational
complexity is close to that of the AVM deblocking.

Keywords—deblocking, AV1, AVM, codecs, video compression

I. INTRODUCTION
AV1 specification [1] was finalized by the Alliance for Open

Media (AOMedia) in 2018. Recently, AOMedia has started
exploration of video compression technologies beyond AV1.
The exploration efforts are based on a joint software base, called
the AOMedia Video Model (AVM) [2], which is publicly
available online. The tools evaluation work is happening in
stages, where experiments at each stage use the same version of
the AOMedia software called anchor.

This paper describes the deblocking filter proposed in these
exploration efforts and adopted in the AVM software. The
deblocking filter is a video coding tool used in the majority of
recent video coding standards. Since a typical video codec
operates on rectangular blocks, the signal representation of each
block at lower bitrate can deviate from the underlying signal. As
transform and quantization is applied independently in each
coding blocks, this may cause visually noticeable boundaries
between the neighboring blocks, called block artifacts. The
deblocking filtering is designed to mitigate these artifacts.

The deblocking is usually used in-loop, i.e. applied to the
decoded pictures before storing them as reference pictures for
further prediction. Applying deblocking to reconstructed
pictures helps to not only improve the output video quality but
also quality of reference pictures, thus resulting in further
compression efficiency improvements. Different algorithms for
in-loop deblocking filtering exist, such as deblocking in H.264
[3] and HEVC standards [4]. The deblocking filter used in VVC
standard [5] is based on the HEVC deblocking filtering with
some longer deblocking filters applied to larger blocks and short
deblocking filters applied to 4x4 blocks.

Deblocking filters typically use information sent in the video
bitstream (such as location of the transform and prediction block
boundaries, block sizes, and quantization parameters) to

determine picture locations where discontinuities may appear.
Then, the deblocking filtering evaluates the signal at the sides of
the block boundary to determine the strength of the filtering to
be applied and whether the filtering should be applied at all.
Typically, stronger filtering is applied when the signal is smooth
on both sides of the boundary, which indicates that a
discontinuity is likely caused by compression and may also be
more visible in this area.

As other video codecs, AV1 uses a deblocking filter. During
the AVM development, some changes have been made to the
software, including a different quantization scheme that allowed
coding at lower bitrates. The AV1 deblocking had no longer
masked all block artifacts effectively in AVM. The deblocking
approach described in this paper has been able to improve the
subjective quality of AVM, especially at lower bitrates, while
also improving the objective metrics.

The paper is organized as follows. Section II gives a brief
overview of the AV1 deblocking filtering. Section III explains
the proposed AVM deblocking. Section IV describes the results,
including objective performance improvements and
improvements in visual quality. Section V discusses the
decoding complexity aspects, while Section VI concludes the
paper.

II. AV1 DEBLOCKING FILTEIRNG
AV1 deblocking filter uses several filter lengths. For the

luma color component, filters can modify 1, 2, 3, and 6 samples
from the block boundary. One more sample is required for
filtering decisions. For chroma components, 1 or 2-samples
from the boundary can be changed. The choice of the maximum
filter length is determined by the minimum size of adjacent
blocks in the direction of filtering.

The deblocking can be applied if there are transform
coefficients present in one of the adjacent blocks or the block
boundary is a prediction block boundary.

The filters used in AV1 deblocking are low-pass filters. To
avoid over-smoothing of textures, a boundary condition is
checked. The boundary samples are classified as low and high
variance by using the following equations (see Fig. 1):

| s[–2] – s[–1] | > T0 (1)

| s[1] – s[0] | >T0 (2)

2 | s[0] – s[–1] | + | s[–2] – s[1] | / 2 > T1 (3)

Fig. 1. Block boundary with adjacent samples.

Here s[i] are values of reconstructed samples with
i = –1,…, –N–1 located on the left (top) and i = 0, …N on the
right (bottom) of the block boundary. T0 and T1 are threshold
values that can be adjusted at the frame or frame segment level.
Also, the filtering strength and thresholds can be set separately
for the vertical and horizontal block boundaries in the luma
component. In chroma components, the same value of the
deblocking strength is used for both vertical and horizontal
boundaries.

When the AV1 deblocking filter can modify more than two
samples from the block boundary, additional samples are
checked by the following conditions:

| s[–i –2] – s[–i –1] | > T0 (4)

| s[i] – s[i –1] | > T0 (5)

III. PROPOSED DEBLOCKING FILTERING
The deblocking filtering consists of three main stages. The

first stage determines locations of block boundaries based on
the bitstream and reconstruction information. It also determines
whether the deblocking can be applied to the boundary and
finds the maximum number of samples that deblocking can
modify. At the next stage, the samples on both sides of the
boundary are examined, and the length/strength of the filtering
may be adjusted based on the local content characteristics.
Finally, the deblocking filtering operations are applied based on
the decisions made in the first two stages.

A. Bitstream based deblocking filtering decisions
Bitstream-based decisions have not changed significantly

from to AV1. The main difference is that for blocks of size 4 in
the direction of filtering, only one sample from the block
boundary is modified, and three samples accessed for the
filtering decisions. This is done to avoid deblocking
dependencies across the picture since the deblocking filtering
decisions use at least 3 samples from the block boundary. The
maximum length of the deblocking filtering has changed, which
is described in subsection D.

B. Sample based deblocking filtering decisions
The actual length of the deblocking filtering is found based

on the sample values at the sides of the block boundary. The
filtering decisions are made for each line of the block boundary
based on the sample values in this line. For each line, (see Fig.
1) the first derivative of the signal is calculated as

d1[i] = s[i+1] – s[i]. (6)

Then, the absolute value of the second derivative is found as

d2[i] = | d1[i] – d1[i – 1] |. (7)

For modification of N samples from the block boundary, all of
following conditions should be false. Eq. (8) should be
evaluated to false for one sample from the block boundary to be
modified. Comparisons in (8) and (9) should be false for
modification of 2 samples from the block boundary.

d2[i] > thr1 for i =1, –2 (8)
d2[0] + d2[–1] > thr2 (9)

For modification of N samples, where N is greater or equal to
3, comparisons (10) and (11) are evaluated in addition to (8)
and (9), which should also be false. The conditions are
evaluated for values of N increasing from 0 to the maximum
value allowed for the current block, and the evaluation stops
once any evaluated condition holds true. The previous value of
N is selected as the maximum length of the deblocking filtering.

| (s[0] – s[N]) – N (s[0] – s[1]) | > thr3, (10)

| (s[–1] – s[–N–1]) – N (s[–1] – s[–2]) | > thr3 (11)

Values of thresholds thr2 and thr3 depend on N with lower
values assigned to higher N, so that longer deblocking filters are
applied to smoother areas.

In the above, thresholds thr1 and thr3 are used for evaluating
the texture smoothness on each side of the block boundary and
depend on a so-called side threshold. The thr2 as well as thr4
from the next sub-section are determined based on the
quantization step size. Both the side threshold and q threshold
values depend on the quantization index and can be modified
by offsets sent in the bitstream.

C. Deblocking filtering operations
Deblocking filtering operations of AV1 are replaced by the

generalized filtering operation. The same equation is used for
modifying N samples at the block boundary. Provided the
number of samples to be modified by the filter on each side of
the block boundary is N, the following operations are applied.

D = (3(s[0] – s[–1]) – (s[1] – s[–2])) / 2 (12)

D¢ = clip(D, – thr4, thr4) (13)

s¢[i] = s[i] – D (N – i) / (2N + 1), for i = 0,…, N –1 (14)

s¢ [–i –1] = s[–i –1] + D(N – i)/(2N + 1), for i = 0,…, N –1 (15)

Here s[i] are sample values before the deblocking filtering at
position i and s¢[i] are sample values after the deblocking
filtering. The clip(v, vmin, vmax) function limits the value of v to
the interval [vmin, vmax].

Parameter D has been derived to minimize the second
derivative of the signal across the block boundary provided that
the samples at the block boundary are modified in the way
described above. The underlying assumption is that deltas for
each sample position are inversely proportional to the distance
from the block boundary to form a smooth transition between
signals on both sides of the boundary (see Figs. 2 and 3).

Note that the signal on the sides of the block boundaries in
Fig. 3 has variations, it is not exactly smooth. Typically, a low-
pass deblocking filter would remove such variations, which may
be related to the boundary artifacts or may be part of the original
signal. Since AVM has other in-loop filters applied after of
deblocking, the proposed deblocking filter avoids modifying the
texture on the side of the boundaries, leaving it to other loop
filters if necessary.

 Filtering operations in (14) and (15) have been implemented
in integer arithmetic without use of divisions. Multiplications
and shifts have been used instead.

D. Deblocking filtering length
The proposed deblocking AVM filter can modify the

following number of samples from each side of the block
boundary:

• 1, 2, 3, 4, 6, 8, or 10 samples from each side of the
block boundary.

• 1 to 4 samples for chroma.

The number of samples modified by deblocking has been
increased compared to AV1. Even though the proposed
deblocking method has improved that objective and subjective
quality, some artifacts at lower QPs and large blocks sizes (e.g.
on 32x32 blocks) could not be completely removed with shorter
filters. Longer filters were found to improve visual quality at
higher QPs, especially in higher resolution sequences.

In order to keep the same line buffer size as in the AV1
deblocking, the maximum length of filters that could be applied
at the horizontal superblock boundary was chosen to be:

• 6 samples for the luma component

• 2 samples for the chroma component

As mentioned previously, filtering decisions require one
additional sample at each side of the block boundary, except the
case of 4x4 blocks, where 1 sample is modified and additional 2
samples are required for the filtering decision (3 samples in total
to find the second derivative).

E. Signaling of deblocking parameters
Signaling of the deblocking parameters has also been

modified. In the proposed filter, a default index to the table with
threshold values is based on the quantization index. An offset
to the default index can be signaled in the bitstream on the
frame or frame segment level. In addition, parameters for
horizontal luma boundaries can be set equal to the parameters
of the vertical luma boundaries to save bits. Otherwise, separate
values for the vertical and horizontal parameter indices can be
sent in the bitstream. Signaling of the deblocking parameters
can thus be more efficient than in AV1, which always sends
explicit parameters that determine deblocking thresholds.

F. Other modifications
Some modifications were applied to the offset-based intra

prediction refinement (ORIP) tool [9]. For blocks larger than 16
samples in the direction of filtering, the refinement of prediction
is switched off for the boundary across the direction of filtering
since it may negatively interact with deblocking in some cases.

IV. RESULTS
The algorithm has been implemented in the AVM software

[6] version 2.0.0. The experiments have been done according to
the AOMedia Common Test Conditions (CTC). The AOMedia
CTC include All Intra (AI), Random Access (RA), Low Delay
(LD), and Adaptive Streaming (AS) configurations. The
Adaptive Streaming configuration uses multi-resolution
encoding and construct a convex hull over obtained points to
calculate the BD-rate [11]. The objective results are obtained
on 60 mandatory CTC test sequences separated into several
classes, according to their resolution and content. For example,
class B1_SYN contains synthetic content primarily of 1080p
resolution. All sequences are 130 frames long, with RA
configuration using two closed GOP of 65 frames each. Only
first 30 frames are encoded in the All Intra test configuration.

A. Objective results
The results are shown in Tables I-IV. One can observe the

PSNR-YUV BD-rates [11] of –0.17%, –0.90%, –1.07%, and
–0.92% for the AI, RA, LD, and AS configurations,
respectively. The “N/A” in some cells of Table IV
corresponding to chroma BD-rates are due to the convex hull
optimization based on PSNR of the luma component.
Consequently, this may cause non-monotonicity in chroma
components of some sequences, for which the BD-rate cannot
be calculated.

Fig. 2. Example of deblocking for modification of 6 samples from each

side of the boundary. Original samples are blue, samples after deblocking
are red. The remaining discontinuity in the middle is due to the integer

representation.

Fig. 3. Example of filtering operations. Note that variations in signal on

the side of the block boundaries are preserved after the filtering is applied.

TABLE I. AVERAGE BD-RATES IN ALL INTRA (AI) CONFIGURATION IN
AOMEDIA CTC

Seq. Class Y U V YUV
A1_4K -0.14% -0.59% -0.65% -0.20%
A1_2K -0.12% -0.49% -0.59% -0.16%

A3_720p -0.16% -0.74% -0.64% -0.21%
A4_360p -0.24% -0.86% -0.75% -0.27%
A5_270p -0.23% -0.51% -0.25% -0.24%
B1_SYN -0.12% -0.62% -0.75% -0.18%
Overall -0.15% -0.60% -0.63% -0.19%

TABLE II. AVERAGE BD-RATES IN RANDOM ACCESS (RA)
CONFIGURATION IN AOMEDIA CTC

Seq. Class Y U V YUV
A1_4K -1.41% -1.74% -1.91% -1.46%
A1_2K -0.97% -1.47% -1.51% -1.01%

A3_720p -0.81% -1.60% -1.16% -0.85%
A4_360p -0.63% -1.14% -1.17% -0.67%
A5_270p -0.40% -0.21% -1.10% -0.42%
B1_SYN -0.59% -1.50% -0.80% -0.64%
Overall -0.86% -1.41% -1.31% -0.90%

TABLE III. AVERAGE BD-RATES IN LOW DELAY (LD) CONFIGURATION
IN AOMEDIA CTC

Seq. Class Y U V YUV
A1_2K -1.39% -1.37% -1.61% -1.40%

A3_720p -1.20% -2.04% -1.77% -1.27%
A4_360p -0.54% -0.78% -1.73% -0.59%
A5_270p -0.30% 0.15% -1.44% -0.32%
B1_SYN -0.81% -0.82% -1.41% -0.84%
Overall -1.05% -1.16% -1.59% -1.07%

TABLE IV. BD-RATES IN ADAPTIVE STREAMING (AS) CONFIGURATION
IN AOMEDIA CTC

Sequence Y U V YUV
BoxingPractice -1.49% -1.21% -1.37% -1.47%
CrossWalk -1.54% -0.64% -0.08% -1.40%
FoodMarket2 -0.80% -0.42% -0.31% -0.75%
Neon1224 -0.98% -1.69% -1.35% -1.05%
NocturneDance -0.50% #N/A* #N/A* -0.56%
PierSeaside -0.21% #N/A* #N/A* -0.26%
Tango -1.45% -1.21% -1.02% -1.40%
Timelapse -0.57% #N/A* #N/A* -0.49%
Average -0.94% #N/A* #N/A* -0.92%

* #N/A in U and V cells correspond to non-monotonic Quality(Rate) curves caused by optimizing the
convex hull for the Y component.

B. Visual quality examples
Visual quality examples can be seen in Figs. 4-6. The

figures use higher values of QP settings (235 and 210) to
emphasize the differences when printed, but visual quality
improvements have also been observed at lower QPs, including
base QP 160. It should be noted that the QP parameter in the
AVM configuration settings corresponds to the highest frame
QP in the prediction hierarchy, while frames of lower layers use
lower QPs. The range of QPs in AVM is from 0 to 255.

C. Expert viewing test
An expert viewing test has been performed in the AOMedia

Codec Working Group to study the effect of the proposed

deblocking on visual quality [10]. The expert viewing was
performed by volunteers at their facilities, and the results were
collected through the online submission form. The test
organizers provided test subjects with the scripts to play the
decoded sequences and with scoring sheets. ABAB playback
order was used, where A and B were decoded sequences of
AVM 2.0.0 and the proposed method. The presentation order of
AVM and the proposal was randomized for each pair. The
following scale was used: “A is much better than B”, “A is better
than B”, “A is equal to B”, “B is better than A”, “B is much
better than A”. The scores were de-randomized and converted to
values from {-2, -1, 0, 1, 2} set. The 95% confidence intervals
were calculated. Overall, 18 sequence/QP test points have been
evaluated based on 9 sequences, 2 QPs per sequence, and a
choice of LD and RA configuration encodings. Base QPs of 160,
185, 210, and 235 were used. Overall, 19 test subjects
participated in the test.

It was found that the proposal was better than the anchor
(i.e. statistically significant difference was observed) in 11 of
18 test cases. In 7 test cases, there was no statistically
significant difference. In particular, none of the four QP160 test
cases showed statistically significant difference, while there
were test cases with statistically significant differences among
base QPs of 185, 210, and 235.

V. DECODING COMPLEXITY
The decoding complexity has been measured separately

since timing on the computational cluster is not reliable. In
particular, the decoding of AVM and the proposal was done on

(a) AVM v.2.0.0 (b) Proposed

Fig 4. Screen shot of sequence Riverbed, RA, QP 235.

(a) AVM v.2.0.0 (b) Proposed

Fig 5. Screen shot of sequence Sol Levante Dragons, RA, QP 210.

the same machine, using one GOP of RA configuration of all
mandatory CTC sequences, and the total decoding time was
obtained. MacBook Pro with 2.3 GHz 8-Core Intel Core i9 was
used for the simulations. The decoder output was directed to
/dev/null to exclude the effect of writing reconstructed files to
the disk.

The first test reported in Table V used the decoder compiled
with SIMD. Note that the AV1/AVM deblocking had complete
SIMD coverage of sample-based deblocking decisions and
filtering operations, while the proposed method had no SIMD
optimizations. One can see the decoding time increase of 8.5%
over AVM.

To compare the performance of the proposal without the
SIMD optimization effect, another comparison was done with
both decoders compiled without SIMD in any part of the code
(see Table VI). One can observe that the increase in the decoding
time is below 1% which indicates the decoding time similar to

TABLE V. DECODING TIME WITH SIMD. AVM’S DEBLOCKING IS FULLY
SIMD OPTIMIZED, THE PROPOSAL HAS NO SIMD IN DEBLOCKING

Time AVM (s) Time proposal (s) Dec. time (%)

787.87 902.35 114.53%

TABLE VI. DECODING TIME COMPARISON WITH SIMD OFF

Time AVM (s) Time proposal (s) Dec. time (%)

3177.38 3199.04 100.68%

the decoding time of AVM deblocking. The increase in the
encoding time has not been significant since the deblocking
filter runtime is negligible compared to the test model encoding
time.

VI. SUMMARY
The proposed deblocking has shown PSNR-YUV BD-rate

(average bit rate reduction for the same quality) of –0.17%,
–0.90%, –1.07%, and –0.92% for All Intra, Random Access,
Low-Delay, and Adaptive Streaming configurations. The
number of line buffers is the same as in AV1 deblocking, and
the computation complexity is not significantly higher. Visual
quality improvements have been observed on a number of test
sequences at higher quantization settings.

ACKNOWLEDGMENT
The author would like to express gratitude to the AOMedia

Testing sub-group co-chair Yeping Su (YouTube) for his help
with the subjective evaluation of the proposal in the AOMedia
Codec Working Group.

REFERENCES

[1] AV1 Bitstream & Decoding Process Specification, version 1.0.0 with
errata, https://aomediacodec.github.io/av1-spec/av1-spec.pdf

[2] AVM reference software, https://gitlab.com/AOMediaCodec/avm
[3] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,

”Adaptive deblocking filter”, in IEEE Trans. Circ. Syst. Video Technol.,
vol. 13, issue 7, pp. 614-619, July 2003.

[4] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K.
Andersson, M. Zhou, and G. Van der Auwera, "HEVC deblocking filter",
in IEEE Trans. Circ. Syst. Video Technol., vol. 22, pp. 1746 – 1754, Dec.
2012.

[5] M. Karczewicz et al., "VVC In-Loop Filters," in IEEE Trans. Circ. Syst.
Video Technol., vol. 31, no. 10, pp. 3907-3925, Oct. 2021.

[6] AOMedia Video Model (AVM) https://gitlab.com/AOMediaCodec/avm
[7] X. Zhao, Z. Lei, A. Norkin, T. Daede, and A. Tourapis, "AOM Common

Test Conditions v2.0," CWG-B075o, 2021.
[8] A. Norkin, “Deblocking filter for AVM”, AOMedia doc. CWG-C014,

Feb. 2022.
[9] M. G. Sarwer and Y. Ye, "Offset based refinement for intra prediction

(ORIP)", AOMedia doc. CWG-B019, Mar. 2021.
[10] A. Norkin and Y. Su, "Expert viewing of C014 Deblocking filter",

AOMedia doc. CWG-C023, March 2022.
[11] G. Bjontegaard, “Calculation of Average PSNR Differences Between RD

Curves”, ITU-T-T SG16 document VCEG-M33, Joint Collaborative
Team on Video Coding (JCTVC)

(a) AVM v.2.0.0

(b) Proposed

Fig 6. Screen shot of sequence Tango, RA, QP 235

