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Abstract

A general two-stage multiple description coding (MDC) scheme using whitening
transform is analyzed. It represents the original image in a form of a coarse im-
age approximation and a residual image. The coarse approximation is subsequently
duplicated and combined with the residual image further split into two descrip-
tions using a chessboard block transform coefficients rearrangement. We identify
the importance of a good coarse approximation and explore different approaches
for changing its resolution and coding it. We also propose different approaches for
coding the residual signal. The coder scheme is quite simple and yet achieves high
performance comparable with other MDC methods.
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1 Introduction

In the recent years, multiple description coding (MDC) has taken considerable
attention as a method of communication over unreliable channels [1], [2], [3],
[4]. MDC is a source-channel coding of information, which can be represented
with different levels of quality. The source is encoded into several bitstreams
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(i.e. multiple descriptions) to be transmitted via independent channels. In the
receiver, the source can be reconstructed by any single bitstream at lower
but still acceptable quality. Higher quality is achieved by more bitstreams
combined and the highest quality is achieved by all bitstreams received with
no errors. By representing the source with different levels of quality MDC
is similar to the layered coding. However, while the latter requires a correct
reception of the base layer in order the enhancement layers to be useful, the
former can reconstruct the source from any subset of bitstreams [1]. In order to
achieve good source reconstruction from any description, all descriptions have
to be similar to the source and, thus, similar to each other. However, having
similar multiple descriptions is not an efficient way of representing a source.
This makes the redundancy allocation an inherent issue of MDC. Under the
assumption that some descriptions might be lost, reconstruction quality versus
redundancy is the sought compromise in every MDC method.

One of the first practical MDC methods, called multiple description scalar
quantization (MDSQ), was proposed by Vaishampayan in [5]. In this method,
the source variable to be transmitted is quantized by two coarse quantizers
with overlapping quantization cells. Together, those quantizers produce fine
quantization with smaller quantization cells.

Another MDC method exploits a linear transform to introduce correlation be-
tween the transform coefficients [3], [4]. After a decorrelating block transform,
variances of the transform coefficients are estimated along blocks. Coefficients
with higher variances are paired with coefficients with lower variances and un-
dergo a pair-wise correlating transform (PCT). This yields two cross-correlated
descriptions. If one description is lost, the correlation introduced in a known
manner allows estimating a lost coefficient from its counterpart in the pair.
This requires knowledge, i.e. transmission of the coefficient variances to the
decoder. To ensure more accurate variance estimation, transform blocks can
be separated into classes (e.g. predominantly horizontal details, predominantly
vertical details, smooth, etc.) and variances are calculated separately within
each class [3]. However, this increases the amount of side information as the
number of variances is multiplied by the number of block classes.

The above-mentioned problems have been addressed in [6] in the light of
whitening the transform coefficients prior to PCT. Whitened coefficients have
close variances that can be considered as equal. Correspondingly, there is no
need to estimate and transmit those variances as they cancel in the estima-
tor formula. The whitening transform is approximated by a subtraction of a
downsampled and coarsely coded image from the original image [6]. Then, a
PCT as in [7] is applied to the coefficients of the residual (whitened) image.
The resulting two descriptions of the residual image are combined with the
duplicated version of the coarse image (shaper).
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Fig. 1. General scheme of method proposed in [6].

However, for the variables with equal variances, PCT does not introduce any
redundancy. Thus, side reconstruction cannot be lower than σ2/2, where σ2

is the coefficient variance. In this contribution, we adopt the idea of 2-stage
image coding. However, we refuse from using PCT in the second stage of the
coding, thus, eliminating any redundancy in representation of the residual
signal. We also suggest modifications in the coarse approximation stage and
in the residual image stage aimed at improving the quality for a given bit
budget by a better redundancy management. We also present an algorithm,
which optimizes the expected distortion based on channel conditions.

The paper is organized as follows. In Section 2, the general coder scheme is
described. Next two sections present details about each of two stages: Section
3 deals with modifications in the coarse approximation coding stage while
Section 4 deals with modifications in the residual image coding stage. Section 5
provides the analysis of the proposed scheme. Section 6 presents the numerical
results and comparisons with other MDC methods, and Section 7 concludes
the paper.

2 General coder structure

The general scheme of the method suggested in [6] is shown in Figure 1.
The initial image is downsampled by two and then JPEG coded. Its decoded
and interpolated version is subtracted from the initial image to approximate a
whitening transform. DCT is applied to the residual image to get uncorrelated
coefficients with approximately equal variance. They undergo pairwise corre-
lating transform (PCT) outputting two bitstreams. The JPEG coded coarse
approximation is called shaper and is included into both descriptions. The
redundancy in this method is mostly determined by duplicating the shaper as
PCT introduces little redundancy when applied to the variables with similar
variance. The authors [6] claim their method to produce better results than
the method in [3].

We modify the above-described method as shown in Figure 2. In our scheme
the shaper (blocks bordered by the dashed line) is generated by decimation
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Fig. 2. Varieties of proposed scheme: (a) shaper is obtained by spline resizing and
JPEG coding; (b) shaper is obtained by SPIHT coding.

with an arbitrary down-scaling factor of M followed by a JPEG coder (see
Figure 2 (a)). We pay special attention to the way the image is decimated and
interpolated. We favor a B-spline-based least square image resizing (biorthog-
onal projection) as it ensures a minimum loss of information [8]. Thus, most
of image information is concentrated in the decimated image to be included
in both descriptions. For the decimated image, a DCT-based coder is a rea-
sonable choice. Alternatively, the shaper can be generated by a wavelet-based
coder, e.g. SPIHT (Figure 2 (b)). In this case, the biorthogonal projection is
inherently included in the scheme.

The proposed scheme (Fig. 2) is similar to one-level Laplacian pyramid [9].
The major difference is that in our coder the quantization of the base layer is
performed before obtaining the residual image. Hence, compression artifacts
from the shaper are present in the residual image and affect its compression.
Thus, the interpolation algorithm requires special attention.

In our modification, the residual image is coded by a JPEG-like coder using
a block transform (denoted by T ). It can be either DCT or lapped orthog-
onal transform (LOT). The transform coefficients are finely quantized by a
uniform quantization step (Qr). Then, transform blocks are directly split into
two parts in a chessboard manner and entropy-coded. One part together with
the shaper form Description 1, while the second part combined again with
the shaper form Description 2. Thus, each description consists of the coarse
image approximation and half of the transform blocks of the residual image.
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Therefore, no extra redundancy is added in the residual image coding while
generating two descriptions instead of one.

The obtained coder provides balanced descriptions both in terms of PSNR and
bit rate. The amount of redundancy is also easily adjustable. The algorithm of
optimal bit allocation subject to probability of a channel error is also provided.
The following two sections explain in detail each stage of the coder. Also we
give reasoning to use one or another method for each particular stage.

3 Coarse image approximation

The idea of this stage is to concentrate as much information as possible into
the shaper within strict bit rate constraints. We would also like to reduce the
artifacts and distortions appearing in the reconstructed coarse approximation.
To realize this idea we explore two alternatives: 1) Least squares image resizing
prior to JPEG coding; and 2) Wavelet-domain SPIHT coding.

3.1 Least squares spline-based resizing and JPEG coding

A JPEG coder with a limited bit budget would use a large quantization fac-
tor applied directly to the original image thus causing unacceptable blocking
artifacts. A better alternative, especially for low bit-rate coding, is to deci-
mate the image first and to apply JPEG with more moderate quantization
factor. The original image resolution is reconstructed by interpolation as a
post-processing step. It has been proven by an analytical model and numeri-
cal analysis that by this approach the bit budget is kept the same while the
visual quality and PSNR are higher [10]. The method in [6] also makes use
of this approach as follows. The decimation by a factor of two in each direc-
tion is achieved by averaging over two pixels along columns followed by the
same operation along rows. The original resolution is reconstructed by nearest
neighbor interpolation. This interpolation introduces blocking artifacts in the
coarse approximation and as a result the residual image gets blocking artifacts
as well.

In an attempt to concentrate more information in the coarse approximation
and correspondingly to make the residual signal closer to white noise, we iden-
tify the need of a better interpolation and decimation method. Spline-based
interpolation methods have shown their superiority in terms of quality and
computational complexity [11], [12]. In the spline formalism, a continuous im-
age model is fit over the discrete pixels, involving B-spline or other optimized
piecewise-polynomial basis functions. It allows resampling the initial image at
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any arbitrary finer grid. As far as the image decimation is concerned, it has to
be performed using functions being biorthogonal to the chosen interpolation
function. This is the biorthogonal projection or least squares paradigm, which
ensures image decimation with a minimum loss of information [8], [12]. Our
practical implementation makes use of a near least squares method for image
decimation proved to be effective for a wide range of decimation ratios [13].

The redundancy in our coder is only determined by the size and quality of
the shaper. Generally, there are two factors controlling the size of shaper (and
hence, the redundancy). The first one is scaling (or interpolation) factor and
the second one is the JPEG quantization factor. Using larger downsampling
and quantization factors one can get lower level of redundancy, hence, lower
quality of side reconstruction (reconstruction from only one description). Al-
ternatively, using smaller downsampling and quantization factors, one can
obtain higher quality side reconstruction. The quality of the two-channel re-
construction is determined mostly by quantization step used for quantization
of LOT coefficients in the residual image.

3.2 Wavelet-based coding

An alternative to JPEG coding in obtaining good low bit-rate image approx-
imation is some wavelet-based coding scheme. In general, wavelets provide
smooth reconstruction of compressed images even for low bit rates. As they
are functions for multiresolution analysis, there is no need of a preliminary
decimation step. In fact, the wavelet decomposition is precisely an orthogo-
nal or biorthogonal projection into the space of synthesizing (reconstruction)
wavelet functions. Moreover, the best wavelets for compression have been gen-
erated via splines, e.g. the famous 9/7 synthesis/analysis wavelet pair. In our
scheme we have involved the SPIHT coding and quantization algorithm [14].

4 Residual image coding

Our approach relies on a quality versus bit budget compromise achieved into
the coarse approximation brunch. We speculate that our coarse approximation
is as good as possible for the given bit budget. Thus, the residual signal is
less informative, and there is no need to introduce redundancy to this signal.
Respectively, the total redundancy is added by only duplicating the base layer
(shaper). We essentially aim at avoiding redundancy in the residual image
coding.

The residual image coding in our method is done by a block transform, e.g.
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(a) Residual image (b) Description 1 (c) Description 2

Fig. 3. Chessboard splitting of the residual image (in case of DCT).

blocks of 8 × 8 pixels are considered. In coding the residual image, no redun-
dancy is added provided that a proper block transform has been chosen. To
generate MDC, the blocks are simply split into two descriptions in a chessboard
manner (see Figure 3).

We explore LOT and DCT as block transforms well suited for the residual
image coding.

4.1 Coding of the residual signal with block DCT

The residual image is transformed using 8 × 8 DCT. Then, all transformed
blocks are finely quantized with a scalar quantizer using a constant quanti-
zation step Qf . The transform blocks are split between two descriptions in a
chessboard manner and entropy coded separately.

4.2 Coding of the residual signal with lapped orthogonal transforms (LOT)

LOT is an alternative to DCT when the quality of the shaper is not good
enough. In such cases some blocking artifacts can be encountered if the image
reconstruction is based on one description only. LOT can efficiently smooth
block borders based on the overlapping windows it uses.

By LOT, each signal block of size N is mapped into a set of N basis functions,
each of them is longer than N samples, i.e. overlapping over adjacent blocks
[15]. For the 2D case the LOT’s are implemented in a separable manner.

In our coder we use Malvar’s LOT [15]. The overlapped blocks of the size
16 × 16 in a spatial domain correspond to 8 × 8 blocks in the transform
domain. Next steps, i.e. quantization by a uniform quantization step Qr and
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chessboard-like splitting into two parts are essentially the same like in the case
of DCT block coding.

4.3 Reconstruction when one description is lost

When the decoder receives both descriptions, the reconstruction is straightfor-
ward. In case of one-channel reconstruction, the lost coefficients are just filled
with zeros. Then, the inverse quantization and inverse transform are applied.
The shaper can be obtained from the received description and added to the
reconstructed residual image.

It is quite clear that this kind of reconstruction is appropriate when using
DCT for coding of the residual image. It was also found that it is the most
appropriate way of the reconstruction when using LOT for the residual image
coding.

In [16] and [17], it was shown that when reconstructing the original image
from only one description, setting the lost coefficients equal to zero produces
severe artifacts. Thus, [16] and [17] present methods for estimation of the lost
coefficients. In [16], the lost LOT coefficients are estimated as the mean of
corresponding coefficients in the neighboring blocks. In [17], it was proposed
to use an iterative procedure using maximally smooth recovery method. More-
over, a family of LOT transforms with advanced reconstruction capabilities
was presented in [16]. However, it was found that for coding of the residual
zero-mean signal these methods work worse than just filling the lost coefficients
with zeros. We suggest that this fact is connected with the high frequency na-
ture of the residual signal that does not allow the estimation of the lost LOT
block from the neighboring blocks.

4.4 Postprocessing for one-channel reconstruction

When DCT is used in the residual image coding, image reconstructed from
one description consists of the blocks, which have different quality. Thus, low
bitrate of the shaper causes visible blocking artifacts. There are basically two
types of blocking artifacts: artifacts in flat areas of the image and artifacts in
the areas with high-frequency content. Artifacts in the flat areas of the image
look as the usual artifacts caused by coarse quantization. These artifacts are
formed by the offset corresponding to the lost DC coefficient in the residual
image and can be reduced by linear filtering across the block borders. In the
areas with high-frequency content, high-quality blocks usually have texture
while the blocks obtained solely from the shaper are flat. In these parts of the
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image, visual quality can be improved by smoothing the border between the
flat and textured blocks.

Postprocessing in our coder is based on the deblocking filter of MPEG-4 [18],
[19], which we modify according to our needs. The deblocking filter operates
in two separate modes depending on the pixel behavior around the block
boundary. In each mode, one-dimensional filtering operations are performed
across the block boundaries along horizontal and vertical directions (see Figure
4). In Figure 4, we assume that filtering is performed in horizontal direction
across the vertical block boundary. The block on the left is reconstructed with
higher quality, and the block on the right is reconstructed from the shaper
and has lower quality.

Fig. 4. Block boundaries.

The following procedure is used to find a smooth region with blocking arti-
facts due to the small DC offset caused by the loss of the DC coefficient in
the residual image. The flatness of the region is examined by the following
measurement [18]:

F (v) =
8

∑

i=0

φ(vi − vi+1) (1)

where

φ(δ) =











1, |δ| ≤ T1

0, otherwise.
(2)

If F (v) ≥ T2, the block is classified as smooth and smooth region mode is
applied. Otherwise, the block is non-smooth, and the default mode is applied.
The thresholds are chosen as T1 = 2 and T2 = 6. In the smooth region mode,
our filter is the same as the deblocking filter of MPEG-4. In this mode, 1-D
nine-tap smoothing filter is applied across the block boundaries, as well as
inside the block. Filtering is performed on eight pixels, four on each side of
the boundary. The filter coefficients are h(n) = 1

16
{1, 1, 2, 2, 4, 2, 2, 1, 1}.

The default mode is modified compared to the MPEG-4 deblocking filter. In
the default mode of MPEG-4 deblocking filter, two pixels are modified, each
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one from its side of the border. In our coder, the pixels from higher-quality
block should not be modified. Instead, we modify only pixel v5 from the lower-
quality block. This is done in the following way. Let us define a0,1, a1,1, a2,1,
and a3,1 as the four-point DCT coefficients of the pixel array S1 (see Figure 4).
The high-frequency coefficient a3,1 is the major factor, affecting the blocking
artifact. It is found [18] that the adjustment of this term helps to reduce the
blocking artifact. In our coder, the high frequency component is modified by
a factor between 0 and 1, resulting in

a′
3,1 = a3,1

min(|a3,0|, |a3,1|, |a3,0|+|a3,2|

2
)

|a3,1|
(3)

where a3,0 and a3,2 are defined similarly to a3,1 for the pixels arrays S0 and

S2, respectively. In (3), the expression |a3,0|+|a3,2|

2
is used rather than |a3,2| as

in [18], because the a3,2 corresponds to “over-smoothed” block of the image.

The coefficient a3,1 can be found as

a3,1 = [k3 − k1 k1 − k3] · [v3 v4 v5 v6]
T ,

where

k1 =
1√
2

cos
π

8
,

k3 =
1√
2

cos
3π

8
.

If the coefficient a3,1 is modified to a′
3,1, pixel v5 has to be modified as

v′
5 = v5 +

1

k1

(a′
3,1 − a3,1). (4)

The clipping operation is applied to the value of v′
5 in order to keep it between

0 and 255. The filtering is performed separately in vertical and horizontal
directions. The proposed filtering method improves both the subjective and
objective quality of one-channel reconstruction of the image. The simulation
results can be found in Section 6.

5 Scheme analysis

5.1 Optimization

For the proposed scheme, we present an algorithm, which optimizes bit allo-
cation subject to probability of the description loss under bit rate constraints.
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The proposed algorithm exploits DCT transform and quantization. Thus, it
is difficult to achieve exact bit allocation as in the case of progressive coders
(e.g. SPIHT). However, approximate bit allocation can be performed.

Let p denote probability of the description loss and R a target bit rate. Rc is
the bitrate of the coarse image representation (shaper), and Rf is the bitrate
of the refinement part (residual image). The central distortion is D0, and the
side distortions are D1 and D2. As we are considering balanced descriptions,
D1 = D2. Then, our task is to minimize

2p(1 − p)D1 + (1 − p)2D0 (5)

subject to
2Rc + Rf ≤ R. (6)

Consider chessboard DCT-based coding of the residual image. The side distor-
tion (D1) is formed by the blocks, half of which are coded with the distortion
D0, and another half is coded with the distortion of coarse image representa-
tion (shaper) Dc. Here we assume that all the 8 × 8 blocks of the image have
the same expected distortion. Consequently,

D1 =
1

2
(Dc + D0). (7)

Expression (7) can also be used in the case of LOT coding of the residual.
As LOT is by definition an orthogonal transform, the mean-squared error
distortion in spatial domain is equal to the distortion in transform domain.
However, side distortion in transform domain is determined by the loss of half
the transform coefficient blocks. Thus, the expression (7) is also valid in case
of LOT.

Then, constrained minimization (5) can be transformed to the unconstrained
minimization task.

J(Rc, Rf ) = p(1−p)(Dc(Rc)+D0(Rc, Rf ))+(1−p)2D0(Rc, Rf )+λ(2Rc+Rf−R)
(8)

For higher bit-rates, D0 only weakly depends on Rc. It will be shown further
in the simulation results. Hence, we can write D0(Rf ). The minimization task
is then simplified to

J(Rc, Rf ) = p(1−p)(Dc(Rc)+D0(Rf ))+(1−p)2D0(Rf )+λ(2Rc+Rf−R). (9)

Generally, we are able to find experimentally the distortion-rate functions
D0(Rf ) and Dc(Rc) to carry out the minimization task.

However, a closed-form solution can be found for i.i.d Gaussian random source.
The distortion-rate function of a Gaussian source with variance σ2 is D(R) =
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σ22−2R. Hence,
Dc(Rc) = σ22−2Rc (10)

It is shown [20] that Gaussian source is successively refinable in regard to the
squared-error distortion measure. Thus, we can write

Df (Rc, Rf ) = σ22−2(Rc+Rf ). (11)

Consequently, our task transforms to the unconstrained minimization of the
function

J(Rc, Rf ) = σ2p(1−p)(2−2Rc+2−2(Rc+Rf ))+σ2(1−p)22−2(Rc+Rf )+λ(2Rc+Rf−R).
(12)

We differentiate the Lagrangian with respect to Rc, Rf , and λ and solve the
system of equations. The obtained optimal Rc and Rf are

R∗
c =

1

2
R +

1

4
log2(p)

R∗
f =−1

2
log2(p) (13)

The rate allocation (13) is, however, sub-optimal because the results were ob-
tained for the case of Gaussian random variable. The “true” optimal allocation
must use rate-distortion characteristics of the particular image and to solve
the optimization task (9) or (8). An interesting result is that optimal bit allo-
cation for Gaussian source does not depends on the source variance σ2. This
has the meaning that bit allocation is the same for all Gaussian sources and
does not depend on the source variance.

One can notice that the optimal bit-rate allocation (13) has the same form
as that for the copies of polyphase components in [21] if we substitute R0 =
Rc + Rf , and R1 = Rc. This result is quite expected. In fact, our approach
and the approach from [21] are based on the same principle. When all the
descriptions are received, all the pixels are reconstructed with fine quality.
If some descriptions are lost, the pixels from corresponding spatial locations
are reconstructed with lower quality. Thus, the results of the optimal bit rate
allocation in terms of mean-squared error are expected to be the same.

5.2 Redundancy range

As it was mentioned earlier, the redundancy of the proposed method is ρ = Rc.
Thus, optimal redundancy ρ∗ is

ρ∗ = R∗
c =

1

2
R +

1

4
log2(p) (14)
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We can see from (14) that optimal redundancy depends on the target bitrate
R and the probability of description loss p. However, for the values R ≤
−1

2
log2(p), optimal redundancy ρ∗ is zero or negative. We interpret this result

in a following way. For these values of R and p, one should not use the multiple
description scheme. Instead, single description coding has to be used. In other
words, when p ≤ 22R, redundancy is set to zero, and single description coding
is used. However, these results can differ from the actual values obtained by
optimization using “true” RD characteristics of particular source. Thus, in
practical implementation of the proposed bit allocation algorithm we use the
following scheme. If the obtained value of Rc is less than 0.05, we fix Rc = 0.05,
and Rf = R − 2Rc.

One can see from (14) that the upper limit for redundancy is obviously R/2. It
corresponds to Rf = 0. Thus, all the bit budget is allocated to shaper, which
is duplicated on both channels. This is achieved for p = 1, the situation when
the channel is not functioning. Thus, when probability of the description loss
is approaching unity, bit allocation is approaching the simple duplication of
data in both descriptions.

5.3 Practical bit allocation

In the previous subsection we have solved the problem of optimal bit-rate al-
location. It is easy to code the shaper to the given rate Rc with SPIHT or
another progressive coder. However, it is difficult to achieve the exact target
bit-rate when coding the shaper with JPEG coding. Fortunately, the approx-
imate bit-rate can be estimated.

5.3.1 Coding the shaper

Down-scaling for better transform compression at low bit-rates was studied
in [10] by Bruckstein et al. The authors presented an algorithm which finds the
optimal down-scaling factor for the given bit-rate. The optimal down-scaling
factor is found based on the target bitrate and the second-order image statis-
tics. Thus, using the algorithm proposed in [10] one can find the appropriate
down-scaling factor to code the given image with bit-rate R∗

c .

5.3.2 Coding the residual signal

It was mentioned earlier that subtracting a coarse image approximation has
an effect of applying whitening transform to the original image. As the resid-
ual signal resembles white noise, the DCT coefficients of the residual image
have approximately the same variance. Thus, the same quantization step is
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used for all DCT coefficients. The compression ratio and the bit-rate of the
residual signal are determined by the variance of the residual image σ2

r and
the quantization step Qf .

Let us model the DCT coefficients of the residual image as i.i.d. Gaussian
random variables with variance σ2

r . DCT is an orthogonal transform. Thus,
variance of DCT coefficients σ2

r can be estimated as the variance of pixel values
in the residual image.

The rate-distortion function of the Gaussian source is

R =
1

2
log2

σ2

D
. (15)

Under the assumption of fine quantization (which is usually valid) the square-
error distortion of the uniform quantization is

D =
1

12
Q2, (16)

where Q is the quantization step. Hence,

Rf =
1

2
log2

12σ2
r

Qf

(17)

and the quantization step for the residual image is chosen as

Qf = ⌈
√

12σr2
−Rf ⌉, (18)

where ⌈·⌉ denotes rounding to the nearest integer towards positive infinity.

5.3.3 Basic coding algorithm

The image coding procedure is as follows. Having the probability of the de-
scription loss, we find the optimal rates R∗

c and R∗
f according to (13). Then,

we estimate the optimal down-scaling factor using the procedure from [10].
Another alternative is to use SPIHT coder for bitrate R∗

c . Then, we decimate
the original image with the estimated down-scaling factor and code the deci-
mated image with JPEG to fit the shaper bit-rate (R∗

c). Then, we obtain the
residual image as a difference between the original image and the shaper. From
the residual image, we estimate the variance of its pixels σ2

r . We apply (18) to
find the quantization step Qf , and code the residual image.
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6 Simulation results

In this section, varieties of our method are explored and compared between
themselves and with other MDC algorithms. For the evaluation, first, we ap-
plied our method to the test image Lena (512 × 512, 8 bpp). For most the
experiments, we generated two rate-distortion curves. The first curve shows
the reconstruction PSNR versus bitrate under the assumption that both de-
scriptions are received. The second curve illustrates the case, when one de-
scription is lost. It is obtained by taking the mean result of two descriptions
used separately to reconstruct the image.

6.1 Proper decimation and interpolation

In the first experiment, we compare different decimation and interpolation
methods to produce the shaper. As for the residual image coding, we fix it
to perform block transform coding, involving Malvar’s LOT [15]. We apply
three decimation/interpolation methods. The first is based on decimation by
2 by averaging over four nearest points and nearest neighbor interpolation,
similarly to [6]. Second is DCT-based decimation and interpolation [22], and
the third is a near least squares B-spline-based decimation and interpolation
[13]. Those three approaches have been combined with the JPEG coder to
get the coded shaper. Additionally, the shaper was obtained by a wavelet-
domain SPIHT coding. Figure 5 shows the reconstruction results when both
descriptions have been received and Figure 6 shows the results when only one
description is received. As can be seen among JPEG methods proper anti-
aliasing decimation and interpolation give substantial improvement. There,
splines and DCT are quite competitive as pre- and post-processing functions.
However, the spline-based method is computationally less costly. Among all
methods, wavelet-based SPIHT gives superior results.

In our experiments we have used linear splines for interpolation and their
biorthogonal counterparts for decimation. Higher order splines would give
better results in a pure decimation/interpolation setting. However, the JPEG
quantization generates artifacts and the subsequent higher-order interpolation
makes them better visible. Linear interpolation plays an additional smoothing
effect to these artifacts. What is more important is the least squares setting
where the image is properly decimated subject to the chosen interpolation
method.

Figure 7 shows interpolation results for image Lena. The original 512 × 512
image Lena is downsampled with biorthogonal splines to the resolution 128×
128. The downsampled image is then quantized and coded with a JPEG-like
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Fig. 5. Central PSNR of overall scheme using different interpolation methods.
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Fig. 6. Mean side PSNR of overall scheme using different interpolation methods.

algorithm. Then, quantized downsampled image is interpolated to the original
resolution with linear splines. One can see that R = 0.085 allows to code this
image with Dc = 26.73 dB.

Figures 8 and 9 compare the performance of the Spline-LOT method with that
of the method introduced in [6] (denoted by WCT). Spline-LOT coder clearly
outperforms WCT coder both for central and side reconstruction mainly due
to the adequate decimation/interpolation.

6.2 Shaper scaling and quantization

Next, we explore how the shaper quality works on the total reconstruction
quality. Again, our residual image coder is a LOT-based one, while the shaper
coder is based on least squares spline decimation/interpolation and JPEG
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Fig. 7. Image interpolation results. (a) Original image 512 × 512 pixels; (b) Image
downscaled to 128 × 128, JPEG-coded and interpolated to the original resolution,
D = 26.73 dB, R = 0.085 bpp.
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Fig. 8. Comparison of Spline-LOT and WCT coder if both descriptions are received
(central PSNR). Qs = 0.7.

with different quantization factor (denoted as Spline-LOT). The shaper quan-
tization factor Qs is determined as a multiplication factor applied to DCT
coefficients before their quantization. Figure 10 shows the results for central re-
construction (from two descriptions) and Figure 11 shows the one-description
reconstruction results.

One can see a higher shaper quantization factor slightly reduces the PSNR
for central reconstruction but at the same time increases the PSNR when one
description is lost. By a finer quantization we thereby provide more bit rate
to the shaper. Thus, we introduce more redundancy that improves the side
reconstruction.

In addition, the rate-distortion curves for central reconstruction have much
steeper slope than rate-distortion curves for the side reconstruction. It evi-
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Fig. 10. Rate-distortion performance of Spline-LOT coder for different values of Qs.
Central PSNR.

dences that finer quantization of residual image results in better central re-
construction but has little influence on the single description reconstruction.
This effect is cased by the form of the side distortion D1 = (D0 + Dc)/2. As
Dc ≫ D0, Dc contributes more to D1. Thus, finer quantization of the resid-
ual image will decrease D0 but will not considerably decrease D1. In order to
decrease D1, one has to allocate more bits to the shaper. This will decrease
Dc/2 component in D1.

The next algorithm uses variable down-scaling factor for coding the shaper
signal. The results are parameterized by the shaper resolution and are shown
in Figures 12 and 13. One can see that changing shaper resolution allows
to achieve even smaller bitrates comparing with changing just quantization
factor.
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Fig. 11. Rate-distortion performance of Spline-LOT coder for different values of Qs.
Mean-side PSNR.
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Fig. 12. Rate-distortion performance of Spline-LOT coder for different shaper res-
olution, Central PSNR.

6.3 Residual signal coding

In the next set of experiments, shaper is obtained by linear B-spline down-
sampling followed by JPEG-coding. The residual signal is coded as in the
following. In the first coder, the residual image is coded by method from [6]
involving DCT followed by PCT (this method is denoted Spline-PCT). The
second coder exploits block-wise DCT followed by splitting the blocks be-
tween two descriptions (the method is denoted Spline-DCT). The third coder
(Spline-LOT) uses LOT for coding the residual. For the Spline-DCT coder,
mean side reconstruction results are obtained with and without postprocess-
ing. Postprocessing is based on the deblocking filter described in Section 4.4.

Figures 14 and 15 compare the rate-distortion performance of the mentioned
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Fig. 13. Rate-distortion performance of Spline-LOT coder for different shaper res-
olution, Mean-side PSNR.

coders for central and mean side reconstruction for test image “Lena”. Figures
16 and 17 show the simulation results for image “Stream and bridge”.
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Fig. 14. Comparison of Spline-DCT, Spline-LOT, and Spline-PCT coders if both
descriptions are received (central PSNR) for different values of Qs. Image Lena.

One can see from the figures that for both low-frequency (“Lena”) and high-
frequency (“Stream and bridge”) images, simple DCT shows slightly bet-
ter performance than LOT and PCT. The results are similar for both low-
frequency and high-frequency images. Surprisingly, in terms of PSNR, Spline-
DCT coder is competitive and even better than expected to be superior,
Spline-LOT coder. While the latter is showing less blocking artifacts, it is
not as efficient as DCT in compressing the residual image which is high-
frequency. Originally, LOTs have been optimized to compress low frequency
signals [15]. One can speculate that using transforms which are optimized
for higher frequency content images could give certain improvement in the
presented scheme.
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Fig. 15. Comparison of Spline-DCT, Spline-LOT, and Spline-PCT coders if one
description is received (mean side PSNR) for different values of Qs. Image Lena.
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Fig. 16. Comparison of Spline-DCT, Spline-LOT, and Spline-PCT coders if both
descriptions are received (central PSNR) for different values of Qs. Image Stream
and bridge.

The experiments with DCT in the residual image coding emphasize once again
the importance of a good shaper coding. If we keep the quality of the shaper
low to achieve smaller redundancy, the blocking (chessboard-like) artifacts
are more visible. This is caused by reconstruction of neighboring blocks with
different quality. However, if the shaper quality is high then, for most of the
images, those kinds of artifacts are not visible. At least, they do not look
visually more annoying than the artifacts caused by the coding of the residual
image by LOT or PCT. Blocking artifacts due to DCT-based coding can also
be reduced by postprocessing.

Figures 15 and 17 show that postprocessing is beneficial for wide range of
bitrates and different redundancies, especially for low-frequency images like
“Lena”. For high-frequency images, postprocessing gives some advantage when
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Fig. 17. Comparison of Spline-DCT, Spline-LOT, and Spline-PCT coders if both
descriptions are received (mean-side PSNR) for different values of Qs. Image Stream
and bridge.

the shaper quality is low. However, postprocessing does not improve the side
reconstruction of the high-frequency image when the shaper has higher quality.
This result is expected, as it is difficult to reconstruct high-frequency content
of the block from its neighborhood.

Figures 18 and 19 show the images reconstructed from one and two descrip-
tions by the Spline-DCT coder together with the images reconstructed from
one and two descriptions by the Spline-LOT coder. One can notice that DCT
and LOT produce different visual artifacts when the image is reconstructed
from a single description. In particular, DCT produces blocking artifacts
caused by the different reconstruction quality of neighboring blocks. LOT
does not produce blocking artifacts. Instead, it produces artifacts that look
similar to ringing.

Figure 20 shows the effect of postprocessing for one-channel reconstruction of
the Spline-DCT coder. As one can see from Figure 20, postprocessing increases
both the subjective and objective quality of the low-frequency image recon-
structed from one description. The results of postprocessing for one-channel
reconstruction for wider range of redundancies can be found in Figure 23 and
Tables 1 and 2. The results show that postprocessing is beneficial for wide
range of redundancies.

6.4 Bit allocation

This section give the example of bit allocation algorithm proposed in subsec-
tion 5.3. Test image is “Boat” (256×256, 8 bpp). The bit allocation algorithm
is given the desired bit rate and the probability of the description loss. Bit allo-
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Fig. 18. Reconstructed image “Lena”, spline interpolation and DCT coding of
shaper. DCT coding of the residual (R = 0.623 bpp, ρ = 28%): (a) reconstruc-
tion from both descriptions, D0 = 35.24 dB; (b) reconstruction from Description 1,
D1 = 31.84 dB. LOT coding of the residual (R = 0.632 bpp, ρ = 27.5%): (c)
reconstruction from both descriptions, D0 = 34.80 dB; (d) reconstruction from
Description 1, D1 = 30.78 dB.

cation procedure exploits the closed-form solution (13). One has to notice that
this bit allocation is suboptimal as it does not use the “true” rate-distortion
characteristics of the source.

Figures 21 and 22 show the RD curves obtained with the bit allocation algo-
rithm for different probabilities of description loss. The coder in these exper-
iments exploits linear splines for decimation and interpolation, and DCT for
residual signal coding. These figures show the desired behavior of the rate al-
location algorithm. In particular, higher probability of description loss results
in bit allocation, which produces higher side PSNR and lower central PSNR.
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Fig. 19. Reconstructed image “Stream and bridge”, spline interpolation and DCT
coding of shaper. DCT coding of the residual (R = 1.700 bpp, ρ = 14.7%): (a)
reconstruction from both descriptions, D0 = 32.10 dB; (b) reconstruction from De-
scription 1, D1 = 26.52 dB. LOT coding of the residual (R = 1.705 bpp, ρ = 14.7%):
(c) reconstruction from both descriptions, D0 = 31.58 dB; (d) reconstruction from
Description 1, D1 = 25.63 dB.

(a) (b)

Fig. 20. Effect of postprocessing on one-description reconstruction; D0 = 35.813 dB,
0.636 bpp: (a) Not filtered, D1 = 28.784 dB; (b) Filtered, D1 = 29.883 dB;
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6.5 Comparison with other MD image coders

In the above, we compared our coder with the WCT coder of [6]. Figures 8
and 9 prove that our coder clearly outperforms the WCT coder. We suggest
that this is due to proper decimation/interpolation.

Here we compare our 2-stage coder with other MD image coders based on
JPEG. The 2-stage coder exploits B-splines and JPEG for coding of shaper.
The residual image is coded with DCT. Two modifications of this coder are
used for comparison: with and without postprocessing described in Section
4.4. These coders are called 2-stage+post-filt and 2-stage, respectively. We
compare our 2-stage coder with two MD coders presented in [3]. One of those
coders is a JPEG-based MDTC image coder. Correlating transform is applied
to the pairs of DCT coefficients. The correlation added by this transform al-
lows to estimate the value of the lost coefficient from the received coefficient.
Another coder (MDSQ) is based on applying multiple description scalar quan-
tization [5] to DCT coefficients of the JPEG coder. Test image Lena (512×512,
8 bpp) is used for comparison.

The central distortion for MDTC and MDSQ coders is D0 = 35.78 dB. The
central distortion for our 2-stage coder ranges from 35.80 dB to 36.00 dB.
Figure 23 represents the RD curves for one-channel reconstruction for the 2-
stage, 2-stage+post-filt, MDTC, and MDSQ coders. Different operating points
for the 2-stage coder are obtained by varying the down-sampling factor for the
shaper.

Figure 23 demonstrates that even without postprocessing, 2-stage coder sub-
stantially outperforms MDTC coder for the whole range of redundancies. The
difference is even larger for low redundancies. We suggest that the superior
performance of the 2-stage coder in the low redundancy region is due to the
down-sampling before JPEG coding of shaper. This down-sampling before
compression allows to obtain higher PSNR for low bit rates compared to the
conventional JPEG compression. The 2-stage coder also performs better or
comparable with MDSQ coder for higher redundancies. In the middle range
of redundancies our coder works better than MDSQ. Moreover, our coder
achieves smaller redundancies than the coders based on MDSQ and MDCT.
One can notice that 2-stage coder is able to produce meaningful side recon-
struction even with the redundancy less than 5%. Figure 23 shows that post-
processing can improve both the subjective and objective quality, especially
for low bitrates. The increase in PSNR due to the postprocessing is up to 1
dB.

The simulation results for the 2-stage coder with and without postprocess-
ing for image “Lena” are given in Table 1. The simulation results for image
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“Stream and bridge” can be found in Table 2.

Bit rate Mean side PSNR Mean side PSNR Central PSNR Shaper PSNR Redundancy

(bpp) (dB) (post-filtering) (dB) (dB) (dB) (%)

0.617 27.053 28.383 35.834 24.340 4.6

0.636 28.714 29.776 35.813 26.149 8.8

0.663 29.998 30.832 35.792 27.600 13.7

0.694 30.984 31.658 35.828 28.751 19.1

0.737 32.138 32.559 35.839 30.169 26.4

0.807 33.458 33.743 35.983 31.871 38.6

0.878 34.006 34.104 35.953 32.667 45.3

Table 1
Performance of the 2-stage coder. Image “Lena” (512 × 512, 8 bpp).

Bit rate Mean side PSNR Mean side PSNR Central PSNR Shaper PSNR Redundancy

(bpp) (dB) (post-filtering) (dB) (dB) (dB) (%)

1.577 24.026 24.630 32.383 21.345 3.1

1.612 25.271 25.661 32.391 22.703 6.5

1.659 25.895 26.152 32.396 23.400 9.6

1.748 26.538 26.656 32.396 24.131 14.3

1.833 26.954 26.995 32.403 24.612 18.1

1.911 27.25 27.228 32.415 24.957 21.3

1.950 27.373 27.323 32.419 25.101 22.7

Table 2
Performance of the 2-stage coder. Image “Stream and bridge” (512 × 512, 8 bpp).

7 Conclusion

We have developed a practical MDC method that improves the two-stage
scheme proposed previously in [6]. The first stage of our coder employs spline
interpolation to obtain the image with lower resolution, which is then coded
and sent to both channels. This coarse image is coded in a way to have a lower
bit rate, yet being smooth and providing satisfactory quality. Then, properly
interpolated, this image is subtracted from the original one, yielding a residual
(details) image. We spend no redundancy in coding two descriptions out of
it. To achieve this, a chessboard splitting of block transform coefficients is
applied.
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Two block-transform coders were compared for coding of the residual image.
The simpler DCT-based coder showed competitive results to the LOT-based
one. While the latter was expected to yield reconstructed images with less
blocking artifacts, the good results for the former prove that we have achieved
a residual image as high-frequency (noisy-like) as possible and correspondingly
better compressible by DCT. The improved performance is due to the adequate
decimation/interpolation scheme we have applied based on biorthogonal pro-
jection (either spline or wavelet). The postprocessing in the DCT-based coder
reduces blocking artifacts and increases side reconstruction quality.

Our MDC method shows better performance comparing to the method in [6]
both for reconstruction from one and two descriptions. It also outperforms the
MD coders from [3].

The further development of this coder may employ using suitable wavelet
transforms for coding the residual signal. An application of this method for
video coding is also to be considered.
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Fig. 21. Image Boat. Bit allocation algorithm for different values of p (probability
of description loss). Central PSNR.
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Fig. 22. Image Boat. Bit allocation algorithm for different values of p (probability
of description loss). Mean side PSNR.
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Fig. 23. RD performance of different coders; image Lena (512×512). Reconstruction
from a single description. For MDTC and MDSQ, D0 = 35.78 dB. For 2-stage and
2-stage with post-filtering, D0 = 35.80 ÷ 36.00).
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